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Context. For a decision-making system trained on data to be reliable, it must possess the ability to
adjust its decisions based on differences between the distribution ptrain(Xtrain, Ytrain) of training samples
and that of test samples ptest(Xtest, Ytest). In case of distribution shift, deep-based-approaches may be
overconfident and tend to treat the given inputs as one of the previously seen situations leading to
mislabelling. This underscores the challenges in detecting out-of-distribution (OOD) samples, where the
test point x0 is marginally sampled from ptest(x0) 6= ptrain(x0), or recognizing that point x0 belongs to
an unseen class (involving a new type of object in the scenes for instance) [1]. Additionally, given the
multimodal nature of inputs and variations in sensor availability, samples may not be embedded into the
same space, posing further challenges related to incomparable spaces. Our approach envisions employing
optimal transport theory [2] to develop algorithms addressing out-of-distribution detection, aiming for a
robust optimal transport framework.

Optimal transport (OT) [2] has become a potent tool for computing distances (a.k.a. Wasserstein or
earth mover’s distances) between data distributions, facilitated by new computational schemes that make
transport computations tractable [3]. Its applications span computer vision, statistics, imaging, and it has
been integrated into machine learning for efficient problem-solving in classification or transfer learning [4].
OT’s advantage lies in its ability to compare high-dimensional empirical probability measures, considering
the geometry of underlying metric spaces and accommodating discrete measures. It also offers tools, like
the Gromov-Wasserstein distance, for comparing distributions not residing in the same ground space.

The classical optimal transport problem seeks a transportation map preserving total mass between
two probability distributions, requiring their masses to be equal. This might be overly restrictive in
applications such as color or shape matching, where distributions have arbitrary masses or only a fraction
needs transporting. Similar challenges arise when datasets Xtrain and/or Xtest contain outliers that should
be excluded from the transportation plan. These scenarios are addressed by unbalanced [5] or partial OT
formulations [6], allowing removal of mass from distributions. Various algorithms have been devised to
solve the problem, with [7] solving the exact partial problem when given the total mass to be transported
between two empirical distributions, and [8] devising algorithms for the unbalanced problem, offering a
regularization path for unbalanced OT when formulated as a penalized regression problem.

Scientific objectives and expected achievements. The primary goal of the internship is to investigate
the behavior of optimal transport (OT) in scenarios where distributions are tainted by outliers or out-of-
distribution (OOD) samples and to formulate a robust OT framework. Existing studies, such as those by
Mukherjee et al. [9] and Balaji et al. [10], have utilized OT in such contexts, employing a straightforward
rule that identifies points significantly distant from the other distribution as outliers. While approaches
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like the regularization path [8] or OT profiles [11] have been effective in selecting optimal regularization
parameters, particularly using techniques like the elbow rule, they may fall short when dealing with points
that are OOD but situated ”between” the two distributions.

Conversely, Monge-Kantorovich (MK) quantiles and ranks, introduced by Chernozhukov et al. [12]
with a comprehensive review available in [13], present an alternative. This method replaces the traditional
”left-to-right” ordering of samples with a ”center-outward” approach applicable in Rd. MK quantiles have
proven successful in devising statistical tests, as demonstrated in studies such as [14] and [15], particularly
for testing independence.

The internship’s specific objectives include: i) examining how the placement of outliers influences the
OT solution, ii) developing a robust OT formulation with statistical guarantees, leveraging MK quantiles,
and iii) implementing the solution in the POT toolbox [16], a tool developed by team members. The intern
will benefit from the expertise gained through ongoing collaborations with academic partners specializing
in this domain.

Furthermore, the internship will explore the integration of partial-OT-based loss in deep learning
approaches as a means to evaluate the proposed methods. Ensuring scalability will be a crucial aspect
of the method’s development. Additionally, investigations into adapting the approach for incomparable
spaces will be undertaken.

Research environnement/Location The research will take place either within the LITIS laboratory
(https://www.insa-rouen.fr/recherche/laboratoires/litis) located at INSA Rouen, France or ei-
ther in the new team from IRISA (MALT) which deals with machine learning and IA in structure environ-
ments. The internship will be jointly supervised by Gilles Gasso (LITIS) and Laetitia Chapel (IRISA).

Candidate profile Applicants are expected to be graduated in applied mathematics/statistics and/or
machine learning and show an excellent academic profile. Beyond, good programming skills are expected.

Application procedure Send a resume to Gilles Gasso (gilles.gasso@insa-rouen.fr) and Laetitia Chapel
(laetitia.chapel@irisa.fr). Potential candidates will be contacted for interview. Feel free to contact us for
any question.
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